ФЭНДОМ


Fluorescence microscop

Флуоресцентный микроскоп

Флуоресцентный микроскоп (лат. fluo — течь, греч. μικρός — маленький и греч. σκοπέω — смотрю) — специализированный оптический микроскоп, предназначенный для изучения свойств органических или неорганических веществ с использованием явления флуоресценции (люминесценции). При этом возможно проводить исследования образцов под действием УФ-излучения в проходящем или отражённом освещении.[1][2]


В основе Флуоресцентный микроскопии лежит метод, впервые сформулированный российским физиком Андреем Климовым (защищённый патентом РФ 2305270, приоритет от 18 мая 2005г. и смежными ему зарубежными патентами), позволяющий увеличить разрешение оптических микроскопов на два и более порядка[3]. Аналогичный принцип был впервые реализован на практике Эриком Бетзигом (Eric Betzig, Нобелевская премия по химии 2014). Дата патентного приоритета Бетзига - 23 мая 2005г, на 5 дней позже даты патентного приоритета Климова.

Однако, патент на устройство (который оспаривается) принадлежит разработчику и создателю Флуоресцентного микроскопа Штефану Хеллу (Stefan Hell) из Института биофизической химии (Max Planck Institute for Biophysical Chemistry (Karl Friedrich Bonhoeffer Institute)) — 2006 год.

Большинство Флуоресцентных микроскопов предназначены для исследований в отражённом свете.Эти микроскопы стали важным инструментом в области биологии, открывая возможности для более передовых направлений микроскопии, типа конфокальной микроскопии позволяющий получать изображения не только с поверхности, но и с некоторой глубины образца.

ОписаниеПравить

Fluorescence microscopy

Устройство микроскопа Olympus BX 51 для исследования образцов методом эпи-флуоресценции в проходящем и отражённом свете

Процесс поглощения энергии фотонов органическими и неорганическими веществами, с последующим испусканием лучей, имеющих большую длину волны, известен как явление флуоресценции (свечения). Эмиссия света образцом, после облучения более коротковолновым излучением, появляется одновременно с началом поглощения возбуждающего излучения. При этом излучение имеет большую длину волны, чем возбуждающее излучение. В случае, когда время свечения после прекращения возбуждающего излучения составляет более микросекунды, процесс называется фосфоресценцией.

Впервые это явление было открыто и описано англичанином  Джордж Стокс Г. в 1852 году. Он заметил, что минерал флюорит начинал светиться красноватым светом, при освещении его ультрафиолетовыми лучами. Дальнейшие исследования показали, что многие объекты: органические и неорганические вещества, кристаллы, смолы, масла, хлорофилл, витамины и др. флюоресцируют при освещении их ультрафиолетовыми лучами. Лишь с 1930 годов началось использование явления флюоресценции в биологических исследованиях. Исследуемые элементы (ткани, бактерии, болезнетворные микроорганизмы и пр.) для их выявления стали окрашивать флуоресцирующими красителями. Это послужило толчком к созданию метода флуоресцентной микроскопии.

Основной принцип работы флуоресцентного микроскопа заключается в облучении образца заданной определенной полосой длин волн вызывающих флуоресценцию образца. Затем необходимо выделить намного более слабое излучение флуоресценции. В идеально настроенном микроскопе, только свет от флуоресценции должен достичь глаза исследователя или детектора так, чтобы в результате флуоресцентные структуры выделялись с высокой контрастностью на очень темном (или черном) фоне. Проблема состоит в том, что свет возбуждения, как правило, в несколько сотен тысяч, а иногда и в миллион раз ярче, чем свет излучаемой флуоресценции.На рисунке показана схема (в разрезе) современного флуоресцентного микроскопа для проведения исследований в проходящем и отражённом свете.

Принципиальная схема флуоресцентного микроскопа состоит из источника ультрафиолетового излучения, возбуждающего и запирающего светофильтров, теплового (теплозащитного) фильтра и специального люминесцентного объектива. Источник света излучает волны в ультрафиолетовой области спектра, которые проходят через фильтр, где отсекаются волны другого спектрального ряда. Ультрафиолетовые лучи попадают на изучаемый препарат и вызывают его люминесценцию. Свет люминесценции проходит через запирающий фильтр, который не пропускает свет возбуждения (ультрафиолетовые волны) и далее формирует изображение в объективе. Для проведения флуоресцентной микроскопии используют метод освещения препарата в проходящем свете и метод освещения в падающем свете.

Следует отметить, что флуоресценция является единственным способом в оптической микроскопии, при которой образец, после возбуждения, сам излучает свет. При этом свет излучается сферически во всех направлениях, независимо от направления источника возбуждающего света.

См. также Править

Примечания Править

  

Обнаружено использование расширения AdBlock.


Викия — это свободный ресурс, который существует и развивается за счёт рекламы. Для блокирующих рекламу пользователей мы предоставляем модифицированную версию сайта.

Викия не будет доступна для последующих модификаций. Если вы желаете продолжать работать со страницей, то, пожалуйста, отключите расширение для блокировки рекламы.

Также на ФЭНДОМЕ

Случайная вики