ФЭНДОМ


 Searchtool  Общая теория относительности
G_{\mu \nu} + \Lambda g_{\mu\nu} = {8\pi G\over c^4} T_{\mu \nu}\,
Гравитация
Математическая формулировка
Космология
См. также: Портал:Физика

Уравне́ния Эйнште́йна (иногда встречается название «уравнения Эйнштейна — Гильберта»[1]) — уравнения гравитационного поля в общей теории относительности, связывающие между собой метрику искривлённого пространства-времени со свойствами заполняющей его материи. Термин используется и в единственном числе: «уравне́ние Эйнште́йна», так как в тензорной записи это одно уравнение, хотя в компонентах представляет собой систему уравнений в частных производных.

Выглядят уравнения следующим образом:

R_{\mu\nu} - {R \over 2}  g_{\mu\nu} + \Lambda g_{\mu\nu} = {8 \pi G \over c^4} T_{\mu\nu},

где R_{\mu\nu}тензор Риччи, получающийся из тензора кривизны пространства-времени R_{abcd} посредством свёртки его по паре индексов, Rскалярная кривизна, то есть свёрнутый тензор Риччи, g_{\mu\nu}метрический тензор, \Lambdaкосмологическая постоянная, а T_{\mu\nu} представляет собой тензор энергии-импульса материи, (πчисло пи, cскорость света в вакууме, Gгравитационная постоянная Ньютона).

Уравнение связывает между собой тензоры 4×4, то есть, формально говоря, содержит 16 уравнений. Однако, так как все входящие в уравнения тензоры симметричны, то в четырёхмерном пространстве-времени эти уравнения равносильны 4·(4+1)/2=10 скалярным уравнениям. Тождества Бьянки приводят к уменьшению числа независимых уравнений с 10 до 6.

В более краткой записи

G_{\mu\nu} + \Lambda g_{\mu\nu} = {8 \pi G \over c^4} T_{\mu\nu},

где G_{\mu\nu} = R_{\mu\nu} - {R \over 2}  g_{\mu\nu}тензор Эйнштейна, который объединяет тензор Риччи, скалярную кривизну и метрический тензор. Тензор Эйнштейна может быть представлен как функция метрического тензора и его частных производных.

Часто лямбда-член Λgμν в записи уравнений Эйнштейна принимается равным нулю, поскольку в задачах локальных масштабов, далёких от космологических, он, как правило, мал. Тогда запись ещё более упрощается:

G_{\mu\nu} = {8 \pi G \over c^4} T_{\mu\nu}.

Наконец, при часто использующемся выборе единиц физических величин таким образом, чтобы скорость света и гравитационная постоянная равнялись безразмерной единице, c = G = 1 (т.н. геометризованная система единиц), запись уравнений Эйнштейна становится наиболее простой; в бескомпонентной форме:

\mathbf{G} = 8 \pi  \mathbf{T}.

Таким образом, уравнение Эйнштейна связывает геометрию пространства-времени (левая часть уравнения) с материей и её движением (правая часть).

Одним из существенных свойств уравнений Эйнштейна является их нелинейность, приводящая к невозможности использования при их решении принципа суперпозиции.

Исторический очерк Править

Работа Эйнштейна над теорией гравитации (общей теорией относительности), в одиночку и в соавторстве с рядом людей, длилась с 1907 года по 1917 год. В середине этих усилий Эйнштейн понимает, что роль гравитационного потенциала должен играть псевдо-риманов метрический тензор на четырёхмерном пространстве-времени, а уравнение гравитационного поля должно быть тензорным, включающим тензор римановой кривизны и тензор энергии-импульса в качестве источника поля, сводясь в пределе малых энергий и стационарных полей к уравнению Пуассона ньютоновской теории гравитации. Затем, в 1913 году вместе с Гроссманом получает первый вариант таких уравнений (уравнения Эйнштейна — Гроссмана), совпадающий с правильным только для отсутствия вещества (или для вещества с бесследовым тензором энергии-импульса).

Летом 1915 года Эйнштейн приехал в Гёттингенский университет, где прочитал ведущим математикам того времени, в числе которых был и Гильберт, лекции о важности построения физической теории гравитации и имевшихся к тому времени у него наиболее перспективных подходах к решению проблемы и её трудностях. Между Эйнштейном и Гильбертом завязалась переписка с обсуждением данной темы, которая значительно ускорила завершение работы по выводу окончательных уравнений поля. До недавнего времени считалось, что Гильберт получил эти уравнения на 5 дней раньше, но опубликовал позже: Эйнштейн представил в Берлинскую академию свою работу, содержащую правильный вариант уравнений, 25 ноября, а заметка Гильберта «Основания физики» была озвучена 20 ноября 1915 года на докладе в Гёттингенском математическом обществе и передана Королевскому научному обществу в Гёттингене, за 5 дней до Эйнштейна (опубликована в 1916 году). Однако в 1997 году была обнаружена корректура статьи Гильберта от 6 декабря, из которой видно, что Гильберт выписал уравнения поля в классическом виде не на 5 дней раньше, а на 4 месяца позже Эйнштейна[2]. В ходе завершающей правки Гильберт также вставил в свою статью ссылки на параллельную декабрьскую работу Эйнштейна[1].

Сначала уравнения Эйнштейна решались приближённо, в частности, из них были выведены как классическая теория Ньютона, так и поправки к ней. Первые точные решения были получены Шварцшильдом для центрально-симметричного случая. Ряд решений был вскоре выведен в рамках релятивистской космологии.

Решения Править

Решить уравнение Эйнштейна — значит найти вид метрического тензора gμν пространства-времени. Задача ставится заданием граничных условий, координатных условий и написанием тензора энергии-импульса Tμν, который может описывать как точечный массивный объект, распределённую материю или энергию, так и всю Вселенную целиком. В зависимости от вида тензора энергии-импульса решения уравнения Эйнштейна можно разделить на вакуумные, полевые, распределённые, космологические и волновые. Существуют также чисто математические классификации решений, основанные на топологических или алгебраических свойствах описываемого ими пространства-времени, или, например, на алгебраической симметрии тензора Вейля данного пространства (классификация Петрова).

См. также Править


Литература Править

  • Альберт Эйнштейн и теория гравитации. Сборник статей. М.: Мир, 1979.
  • Вейнберг С. Гравитация и космология = Gravitation and Cosmology. — М.: Мир, 1975. — 695 с.
  • Визгин В. П. Релятивистская теория тяготения (истоки и формирование 1900—1915). М.: Наука, 1981.
  • Крамер Д. и др. Точные решения уравнений Эйнштейна. М.: Мир, 1982. — 416с.
  • Ландау, Л. Д., Лифшиц, Е. М. Теория поля. — Издание 7-е, исправленное. — М.: Наука, 1988. — 512 с. — («Теоретическая физика», том II). — ISBN 5-02-014420-7.
  • Паули В. Теория относительности. М.: Наука, 1991.

Примечания Править

  1. 1,0 1,1 Сам Гильберт никогда не претендовал на авторство этих уравнений и безоговорочно признавал приоритет Эйнштейна. См. подробности в статье: Эйнштейн, Альберт#Гильберт и уравнения гравитационного поля.
  2. Визгин В. П. Об открытии уравнений гравитационного поля Эйнштейном и Гильбертом (новые материалы). УФН, Том 171 № 12 (2001), стр. 1347—1363.

  1. Википедия Уравнения Эйнштейна адрес
  2. Викисловарьадрес
  3. Викицитатникадрес
  4. Викиучебникадрес
  5. Викитекаадрес
  6. Викиновостиадрес
  7. Викиверситетадрес
  8. Викигидадрес

Выделить Уравнения Эйнштейна и найти в:

  1. Вокруг света Эйнштейна адрес
  2. Академик Эйнштейна/ru/ru/ адрес
  3. Астронет адрес
  4. Элементы Эйнштейна+&search адрес
  5. Научная Россия Эйнштейна&mode=2&sort=2 адрес
  6. Кругосвет Эйнштейна&results_per_page=10 адрес
  7. Научная Сеть
  8. Традицияадрес
  9. Циклопедияадрес
  10. ВикизнаниеЭйнштейна адрес
  1. Google
  2. Bing
  3. Yahoo
  4. Яндекс
  5. Mail.ru
  6. Рамблер
  7. Нигма.РФ
  8. Спутник
  9. Google Scholar
  10. Апорт
  11. Онлайн-переводчик
  12. Архив Интернета
  13. Научно-популярные фильмы на Яндексе
  14. Документальные фильмы
  1. Список ru-вики
  2. Вики-сайты на русском языке
  3. Список крупных русскоязычных википроектов
  4. Каталог wiki-сайтов
  5. Русскоязычные wiki-проекты
  6. Викизнание:Каталог wiki-сайтов
  7. Научно-популярные сайты в Интернете
  8. Лучшие научные сайты на нашем портале
  9. Лучшие научно-популярные сайты
  10. Каталог научно-познавательных сайтов
  11. НАУКА В РУНЕТЕ: каталог научных и научно-популярных сайтов

  • Страница 0 - краткая статья
  • Страница 1 - энциклопедическая статья
  • Разное - на страницах: 2 , 3 , 4 , 5
  • Прошу вносить вашу информацию в «Уравнения Эйнштейна 1», чтобы сохранить ее

Комментарии читателей:Править

Обнаружено использование расширения AdBlock.


Викия — это свободный ресурс, который существует и развивается за счёт рекламы. Для блокирующих рекламу пользователей мы предоставляем модифицированную версию сайта.

Викия не будет доступна для последующих модификаций. Если вы желаете продолжать работать со страницей, то, пожалуйста, отключите расширение для блокировки рекламы.

Также на ФЭНДОМЕ

Случайная вики