Wikia

Наука

Ультрафиолетовое излучение

Обсуждение0
14 483статьи на этой вики
Виды электромагнитного излучения
Синхротронное
Циклотронное
Тормозное
Тепловое
Монохроматическое
Черенковское
Переходное
Радиоизлучение
Микроволновое
Терагерцевое
Инфракрасное
Видимое
Ультрафиолетовое
Рентгеновское
Гамма-излучение
Ионизирующее
Реликтовое
Магнито-дрейфовое
Двухфотонное
Вынужденное

Ультрафиоле́товое излуче́ние (ультрафиолет, УФ, UV) — электромагнитное излучение, занимающее диапазон между видимым и рентгеновским излучением (380 — 10 нм, 7,9×1014 — 3×1016 Гц). Диапазон условно делят на ближний (380—200 нм) и далёкий, или вакуумный (200—10 нм) ультрафиолет, последний так назван, поскольку интенсивно поглощается атмосферой и исследуется только вакуумными приборами.

История открытия Править

Вскоре после того, как было обнаружено инфракрасное излучение, немецкий физик Иоганн Вильгельм Риттер начал поиски излучения и в противоположном конце спектра, с длиной волны короче, чем у фиолетового цвета. В 1801 году он обнаружил, что хлорид серебра, разлагающийся под действием света, быстрее разлагается под действием невидимого излучения за пределами фиолетовой области спектра. Тогда, многие ученые, включая Риттера, пришли к соглашению, что свет состоит из трех отдельных компонентов: окислительного или теплового (инфракрасного) компонента, осветительного компонента (видимого света), и восстановительного (ультрафиолетового) компонента. В то время ультрафиолетовое излучение называли также «актиническим излучением».

Идеи о единстве трёх различных частей спектра были впервые озвучены лишь в 1842 году в трудах Александра Беккереля, Македонио Меллони и др.

Воздействие на здоровье человека Править

Биологические эффекты ультрафиолетового излучения в трёх спектральных участках несколько различны, поэтому биологи выделяют:

  • Ближний ультрафиолет, УФ-A лучи (UVA, 315-400 нм)
  • УФ-B лучи (UVB, 280-315 нм)
  • Дальний ультрафиолет, УФ-C лучи (UVC, 100-280 нм)

Практически весь UVC и приблизительно 90% UVB поглощаются озоном, а также водным паром, кислородом и углекислым газом при прохождении солнечного света через земную атмосферу. Излучение из диапазона UVA достаточно слабо поглощается атмосферой. Поэтому радиация, достигающая поверхности Земли, в значительной степени содержит ближний ультрафиолет UVA, и, в небольшой доле - UVВ.

В ХХ веке было впервые показано, почему УФ - излучение оказывает благотворное воздействие на человека. Физиологическое действие Уф-лучей было исследовано отечественными и зарубежными исследователями в середине прошлого столетия (Г. Варшавер. Г. Франк. Н. Данциг, Н. Галанин. Н. Каплун, А. Парфенов, Е. Беликова. В. Dugger. J. Hassesser. Н. Ronge, Е. Biekford и др.) |1-3|. Было убедительно доказано в сотнях экспериментов, что излучение в УФ области спектра (290-400 нм) повышает тонус симпатико-адреналиновой системы, активирует защитные механизмы, повышает уровень неспецифического иммунитета, а также увеличивает секрецию ряда гормонов. Под воздействием УФ излучения (УФИ) образуются гистамин и подобные ему вещества, которые обладают сосудорасширяющим действием, повышают проницаемость кожных сосудов. Изменяется углеводный и белковый обмен веществ в организме. Действие оптического излучения изменяет легочную вентиляцию — частоту и ритм дыхания; повышается газообмен, потребление кислорода, активизируется деятельность эндокринной системы. Особенно значительна роль УФ излучения в образовании в организме витамина Д, укрепляющего костно-мышечную систему и обладающего антирахитным действием. Особо следует отметить, что длительная недостаточность УФИ может иметь неблагоприятные последствия для человеческого организма, называемые «световым голоданием». Наиболее частым проявлением этого заболевания является нарушение минерального обмена веществ, снижение иммунитета, быстрая утомляемость и т.п.

Несколько позже в работах (О.Г. Газенко, Ю.Е. Нефедов, Е.А. Шепелев, С.Н. Залогуев, Н.Е. Панферова, И.В. Анисимова) указанное специфическое действие излучения было подтверждено в космической медицине [4, 5]. Профилактическое УФ облучение было введено в практику космических полетов наряду с Методическими указаниями (МУ) 1989 г. «Профилактическое ультрафиолетовое облучение людей (с применением искусственных источников УФ излучения)» [6]. Оба документа являются надежной базой дальнейшего совершенствования УФ профилактики.

Источники ультрафиолетаПравить

Природные источникиПравить

Основной источник ультрафиолетового излучения на Земле - Солнце. Соотношение интенсивности излучения УФ-А и УФ-Б, общее количество ультрафиолетовых лучей, достигающих поверхности Земли, зависит от следующих факторов:

  • от концентрации атмосферного озона над земной поверхностью (см. озоновые дыры)
  • от возвышения Солнца
  • от высоты над уровнем моря
  • от атмосферного рассеивания
  • от состояния облачного покрова
  • от степени отражения УФ-лучей от поверхности (воды, почвы)

Искусственные источники Править

Благодаря созданию и совершенствованию искусственных источников УФ излучения, шедшими параллельно с развитием электрических источников видимого света, сегодня специалистам, работающим с УФ излучением в медицине, профилактических, санитарных и гигиенических учреждениях, сельском хозяйстве и т.д., предоставляются существенно большие возможности, чем при использовании естественного УФ излучения. Разработкой и производством УФ ламп для установок фотобиологического действия (УФБД) в настоящее время занимаются как ряд крупнейших электроламповых фирм (Philips, Osram, Radium, Sylvania и др.). В России известны производители УФ ламп для УФБД: ОАО «Лисма-ВНИИИС» (Саранск), НПО «ЛИТ» (Москва), ОАО СКБ «Ксенон» (Зеленоград), ООО «ВНИСИ» (Москва). Номенклатура УФ ламп для УФБД весьма широка и разнообразна: так, например, у ведущего в мире производителя фирмы Philips она насчитывает более 80 типов. В отличие от осветительных УФ источники излучения, как правило, имеют селективный спектр, рассчитанный на достижение максимально возможного эффекта для определенного ФБ процесса. Классификация искусственных УФ ИИ по областям применения, детерминированным через спектры действия соответствующих ФБ процессов с определенными УФ диапазонами спектра:

  • Эритемные лампы (ЛЭЗО, ЛЭР40) были разработаны в 60-х годах прошлого века для компенсации «УФ недостаточности» естественного излучения и, в частности, интенсификации процесса фотохимического синтеза витамина ДЗ в коже человека («антирахитное действие»).

В 70-80 годах эритемные ЛЛ, кроме медицинских учреждений, использовались в специальных «фотариях» (например, для шахтеров и горных рабочих), в отдельных ОУ общественных и производственных зданий северных регионов, а также для облучения молодняка сельскохозяйственных животных.

Спектр ЛЭ30 радикально отличается от солнечного; на область В приходится большая часть излучения в УФ области, излучение с лямбда < 300нм, которое в естественных условиях вообще отсутствует, может достигать 20% от общего УФ излучения. Обладая хорошим "анитирахитным действием», излучение эритемных ламп с максимумом в диапазоне 305-315 нм оказывает одновременно сильное повреждающее воздействие на коньюктиву (слизистую оболочку глаза). Отметим, что в номенклатуре УФ ИИ фирмы Philips присутствуют ЛЛ типа ТL12 с предельно близкими к ЛЭ30 спектральными характеристиками, которые наряду с более «жесткой» УФ ЛЛ типа ТL01 используются в медицине для лечения фотодерматозов. Диапазон существующих УФ ИИ. которые используются в фототерапевтических установках, достаточно велик; наряду с указанными выше УФ ЛЛ, это лампы типа ДРТ или специальные МГЛ зарубежного производства, но с обязательной фильтрацией УФС излучения и ограничением доли УФВ либо путем легирования кварца, либо с помощью специальных светофильтров, входящих в комплект облучателя.

  • В странах Центральной и Северной Европы, а также в России достаточно широкое распространение получили УФ ОУ типа «Искусственный солярий», в которых используются УФ ЛЛ, вызывающие достаточно быстрое образование загара. В спектре «загарных» УФ ЛЛ преобладает «мягкое» излучение в зоне УФА Доля УФВ строго регламентируется, зависит от вида установок и типа кожи (в Европе различают 4 типа человеческой кожи от «кельтского» до «средиземноморского») и составляет 1-5% от общего УФ излучения. ЛЛ для загара выпускаются в стандартном и компактном исполнении мощностью от 15 до 160 Вт и длиной от 30 до 180 см.
  • В 1980 г. американский психиатр Альфред Леви описал эффект «зимней депрессии», которую сейчас квалифицируют как заболевание и начинают сокращенно SAD (Saisonal Affective Disordes). Заболевание связано с недостаточной инсоляцией, т.е. естественным освещением. По оценкам специалистов, синдрому SAD подтверждено ~ 10-12 % населения (земли и прежде всего жители стран Северного полушария. Известны данные по США: в Нью-Йорке – 17%, на Аляске – 28%, даже во Флориде – 4:. По странам Северной Европы данные колеблются от 10 до 40%.

В связи с тем, что SAD является, бесспорно, одним из проявлений «солнечном недостаточности», неизбежен возврат интереса к так называемым лампам «полного спектра», достаточно точно воспроизводящим спектр естественною снега не только в видимой, но и в УФ области. Ряд зарубежных фирм включило ЛЛ «полного спектра в свою номенклатуру, например, фирма Osram и Radium выпускают подобные УФ ИИ модностью 18, 36 и 58 Вт под названиями, соответственно, «Biolux» и «Biosun», спектральные характеристик которых практически совпадают. Эти лампы естественно, не обладают «антирахитным эффектом», но помогают устранять у людей ряд неблагоприятных синдромов, связанных с ухудшением здоровья в осенне-зимний период и могут также использоваться в профилактических целях в ОУ школ, детских садов, предприятий и учреждений для компенсации «светового голодания». При этом необходимо напомнить, что ЛЛ «полного спектра» по сравнению c ЛЛ цветности ЛБ имеют световую отдачу – на 30% меньше, что неизбежно приведет к уменьшению энергетических и капитальных затрат в осветительно-облучательной установке. Проектирование и эксплуатация подобных установок должны осуществляться с учетом требований стандарта CTES 009/E:2002 «Фотобиологическая безопасность ламп и ламповых систем».

  • Весьма рациональное применение найдено УФЛЛ, спектр излучения которых совпадает со спектром действия фототаксиса некоторых видов летающих насекомых-вредителей (мух, комаров, моли и т.д.), которые могут являться переносчиками заболеваний и инфекций, приводить к порче продуктов и изделий.

Эти УФ ЛЛ используются в качестве ламп-аттрактантов в специальных устройствах-светоловушках, устанавливаемых в кафе, ресторанах, на предприятиях пищевой промышленности, в животноводческих и птицеводческих хозяйствах, складах одежды и пр.

Сфера применения Править

Чёрный свет Править

VisaunderUV

На кредитных картах VISA при освещении УФ лучами появляется изображение птицы

Лампа чёрного света — лампа, которая излучает преимущественно в длинноволновой ультрафиолетовой области спектра (диапазон UVA) и даёт очень немного видимого света.

Для защиты документов от подделки их часто снабжают ультрафиолетовыми метками, которые видны только в условиях ультрафиолетового освещения. Большинство паспортов, а также банкноты различных стран содержат защитные элементы в виде краски или нитей, светящихся в ультрафиолете.

Ультрафиолетовое излучение, даваемое лампами чёрного света является достаточно мягким и оказывает наименее серъёзное негативное влияние на здоровье человека.

Стерилизация Править

UV-ontsmetting laminaire-vloeikast

Кварцевая лампа, используемая для стерилизации в лаборатории

Ультрафиолетовые (т.н. кварцевые) лампы используются для стерилизации помещений и инструментов в биологических лабораториях и медицинских учреждениях. В наиболее распространённых ртутных лампах низкого давления 86 % излучения приходится на длину волны 254 нм, что хорошо согласуется с одним из двух пиков кривой бактерицидной эффективности (т.е. эффективности поглощения ультрафиолета молекулами ДНК). Один из этих пиков находится в районе длины волны излучения равной 265 нм, а второй — 185 нм. Излучение с длиной волны 185 нм оказывает большее влияние на ДНК, однако кварцевое стекло, используемое для изготовления колбы лампы, также как и другие природные вещества (например вода) менее прозрачно для волн этого диапазона и более прозрачно для 265 нм волн.

Бактерицидное УФ излучение на этих длинах волн вызывает димеризацию тимина в молекулах ДНК. Накопление таких изменений в ДНК микроорганизмов приводит к замедлению темпов их размножения и вымиранию.

В связи с тем, что подобные лампы воздействуют только на те микроорганизмы, которые непосредственно подвергаются воздействию их излучения, возникает проблема недостаточного стерилизационного эффекта в затенённых областях помещения. Именно по этой причине кварцевые лампы применяются только в комплексе с другими методиками стерилизации.

Дезинфекция питьевой воды Править

Метод дезинфекции с использованием УФ-излучения доказал свою эффективность при дезактивации переносимых водой болезнетворных микроорганизмов и вирусов без ухудшения вкуса и запаха воды и без внесения в воду нежелательных побочных продуктов. Такой метод дезинфекции завоевывает популярность в качестве альтернативы или дополнения к традиционным средствам дезинфекции, таким как хлор, из-за своей безопасности, экономичности и эффективности. Метод УФ-дезинфекции не обеспечивает полной дезинфекции остаточных загрязняющих веществ, поэтому в больших системах распределения он должен сочетаться с применением дополнительных средств дезинфекции.

Принцип действия УФ-излучения — УФ-дезинфекция выполняется при облучении находящихся в воде микроорганизмов УФ- излучением определенной интенсивности в течение определенного периода времени. В результате такого облучения микроорганизмы «микробиологически» погибают, т. к. они теряют способность воспроизводства. УФ-излучение, имеющее бактерицидную длину волны 260 нм или близкую длину волны, проникает сквозь стенку клетки переносимого водой микроорганизма и поглощается ДНК, называемой генетической цепочкой микроорганизма, в результате чего процесс воспроизводства микроорганизма прекращается.

Астрономия Править

Спектрометрия Править

Анализ минералов Править

Многие минералы содержат вещества, которые при освещении ультрафиолетовым излучением начинают испускать видимый свет. Каждая примесь светится по-своему, что позволяет по характеру свечения определять состав данного минерала. А. А. Малахов в своей книге «Занимательно о геологии» (М., «Молодая гвардия», 1969. 240 с) рассказывает об этом так: «Необычное свечение минералов вызывают и катодный, и ультрафиолетовый, и рентгеновский лучи. В мире мёртвого камня загораются и светят наиболее ярко те минералы, которые, попав в зону ультрафиолетового света, рассказывают о мельчайших примесях урана или марганца, включённых в состав породы. Странным „неземным“ цветом вспыхивают и многие другие минералы, не содержащие никаких примесей. Целый день я провёл в лаборатории, где наблюдал люминесцентное свечение минералов. Обычный бесцветный кальцит расцвечивался чудесным образом под влиянием различных источников света. Катодные лучи делали кристалл рубиново-красным, в ультрафиолете он загорался малиново-красными тонами. Два минерала — флюорит и циркон — не различались в рентгеновских лучах. Оба были зелёными. Но стоило подключить катодный свет, как флюорит становился фиолетовым, а циркон — лимонно-жёлтым.» (с. 11).

Фотолитография Править

Ловля насекомых Править

Ультрафиолетовое излучение нередко применяются при ловле насекомых на свет (нередко в сочетании с лампами, излучающими в видимой части спектра). Это связано с тем, что у большинства насекомых видимый диапазон смещён, по сравнению с человеческим зрением, в коротковолновую часть спектра: насекомые не видят того, что человек воспринимает как красный, но видят мягкий ультрафиолетовый свет.

ar:فوق البنفسجية

bs:Ultraljubičasto zračenje ca:Ultraviolat cs:Ultrafialové záření da:Ultraviolet lys de:Ultraviolettstrahlung en:Ultraviolet es:Radiación ultravioleta et:Ultraviolettkiirgus fa:فرابنفش fi:Ultraviolettisäteily fr:Ultraviolet gl:Ultravioleta he:על-סגול hr:Ultraljubičasto zračenje id:Ultraungu io:Ultreviolea is:Útfjólublátt ljós it:Radiazione ultravioletta ja:紫外線 ko:자외선 mk:Ултравиолетова светлина ms:Ultraungu nl:Ultraviolet no:Ultrafiolett stråling pl:Ultrafiolet pt:Radiação ultravioleta simple:Ultraviolet sk:Ultrafialové žiarenie sl:Ultravijolično valovanje sq:Rrezet ultravioletë sr:Ултраљубичасто зрачење ta:புற ஊதா கதிர் th:รังสีอัลตราไวโอเลต tr:Morötesi uk:Випромінювання ультрафіолетове vi:Tia cực tím zh:紫外线

Викия-сеть

Случайная вики