Фэндом

Наука

Тонкая структура

22 193статьи на
этой вики
Добавить новую страницу
Обсуждение0 Поделиться

В атомной физике тонкая структура описывает расщепление спектральных линий атомов.

Макроскопическая структура спектральных линий - это число линий и их расположение. Она определяется разницей в энергетических уровнях различных атомных орбиталей. Однако при более детальном исследовании каждая линия проявляет свою детальную тонкую структуру. Эта структура объясняется малыми взаимодействиями, которые немного сдвигают и расщепляют энергетические уровни. Их можно анализировать методами теории возмущений. Тонкая структура атома водорода на самом деле представляет собой две независимые поправки к боровским энергиям: одна из-за релятивистского движения электрона, а вторая из-за связи спин-орбита.

Релятивистские поправкиПравить

В классической теории кинетический член гамильтониана:

T=\frac{p^{2}}{2m}

Однако, учитывая СТО, мы должны использовать релятивистское выражение для кинетической энергии,

T=\sqrt{p^{2}c^{2}+m^{2}c^{4}}-mc^{2}

где первый член - это общая релятивистская энергия, а второй член - это энергия покоя электрона. Раскладывая это в ряд, получаем

T=\frac{p^{2}}{2m}-\frac{p^{4}}{8m^{3}c^{2}}+\dots

Тогда поправка первого порядка к гамильтониану равна

H'=-\frac{p^{4}}{8m^{3}c^{2}}

Используя это как возмущение, мы можем вычислить релятивистские энергетические поправки первого порядка.

E_{n}^{(1)}=\langle\psi^{0}\vert H'\vert\psi^{0}\rangle=-\frac{1}{8m^{3}c^{2}}\langle\psi^{0}\vert p^{4}\vert\psi^{0}\rangle=-\frac{1}{8m^{3}c^{2}}\langle\psi^{0}\vert p^{2}p^{2}\vert\psi^{0}\rangle

где \psi^{0} - невозмущенная волновая функция. Вспоминая невозмущенный гамильтониан, мы видим

H^{0}\vert\psi^{0}\rangle=E_{n}\vert\psi^{0}\rangle

\left(\frac{p^{2}}{2m}-V\right)\vert\psi^{0}\rangle=E_{n}\vert\psi^{0}\rangle

p^{2}\vert\psi^{0}\rangle=2m(E_{n}-V)\vert\psi^{0}\rangle

Далее мы можем использовать этот результат для вычисления релятивистской поправки:

E_{n}^{(1)}=-\frac{1}{8m^{3}c^{2}}\langle\psi^{0}\vert p^{2}p^{2}\vert\psi^{0}\rangle

E_{n}^{(1)}=-\frac{1}{8m^{3}c^{2}}\langle\psi^{0}\vert (2m)^{2}(E_{n}-V)^{2}\vert\psi^{0}\rangle

E_{n}^{(1)}=-\frac{1}{2mc^{2}}(E_{n}^{2}-2E_{n}\langle V\rangle +\langle V^{2}\rangle )

Для атома водорода, V=\frac{e^{2}}{r}, \langle V\rangle=\frac{e^{2}}{a_{0}n^{2}} и \langle V^{2}\rangle=\frac{e^{4}}{(l+1/2)n^{3}a_{0}^{2}} где a_{0} - боровский радиус, n - главное квантовое число и l - орбитальное квантовое число. Следовательно, релятивистская поправка для атома водорода равна

E_{n}^{(1)}=-\frac{1}{2mc^{2}}\left(E_{n}^{2}-2E_{n}\frac{e^{2}}{a_{0}n^{2}} +\frac{e^{4}}{(l+1/2)n^{3}a_{0}^{2}}\right)=-\frac{E_{n}^{2}}{2mc^{2}}\left(\frac{4n}{l+1/2}-3\right)

Связь спин-орбитаПравить

Поправка спин-орбита появляется, когда мы из стандартной системы отсчета (где электрон облетает вокруг ядра) переходим в систему, где электрон покоится, а ядро облетает вокруг него. В этом случае движущееся ядро представляет собой эффективную петлю с током, которая в свою очередь создает магнитное поле. Однако электрон сам по себе имеет магнитный момент из-за спина. Два магнитных вектора, \vec B и \vec\mu_s сцепляются вместе так, что появляется определенная энергия, зависящая от их относительной ориентации. Так появляется энергетическая поправка вида

 \Delta E_{SO} = \xi (r)\vec L \cdot \vec S

СсылкиПравить

  • Griffiths, David J. Introduction to Quantum Mechanics (2nd ed.) Prentice Hall 2004 ISBN 0-13-805326-X
  • Liboff, Richard L. Introductory Quantum Mechanics Addison-Wesley 2002 ISBN 0-8053-8714-5

Внешние ссылкиПравить


  1. Википедия Тонкая структура адрес
  2. Викисловарьадрес
  3. Викицитатникадрес
  4. Викиучебникадрес
  5. Викитекаадрес
  6. Викиновостиадрес
  7. Викиверситетадрес
  8. Викигидадрес

Выделить Тонкая структура и найти в:

  1. Вокруг света структура адрес
  2. Академик структура/ru/ru/ адрес
  3. Астронет адрес
  4. Элементы структура+&search адрес
  5. Научная Россия структура&mode=2&sort=2 адрес
  6. Кругосвет структура&results_per_page=10 адрес
  7. Научная Сеть
  8. Традицияадрес
  9. Циклопедияадрес
  10. Викизнаниеструктура адрес
  1. Google
  2. Bing
  3. Yahoo
  4. Яндекс
  5. Mail.ru
  6. Рамблер
  7. Нигма.РФ
  8. Спутник
  9. Google Scholar
  10. Апорт
  11. Онлайн-переводчик
  12. Архив Интернета
  13. Научно-популярные фильмы на Яндексе
  14. Документальные фильмы
  1. Список ru-вики
  2. Вики-сайты на русском языке
  3. Список крупных русскоязычных википроектов
  4. Каталог wiki-сайтов
  5. Русскоязычные wiki-проекты
  6. Викизнание:Каталог wiki-сайтов
  7. Научно-популярные сайты в Интернете
  8. Лучшие научные сайты на нашем портале
  9. Лучшие научно-популярные сайты
  10. Каталог научно-познавательных сайтов
  11. НАУКА В РУНЕТЕ: каталог научных и научно-популярных сайтов

  • Страница 0 - краткая статья
  • Страница 1 - энциклопедическая статья
  • Разное - на страницах: 2 , 3 , 4 , 5
  • Прошу вносить вашу информацию в «Тонкая структура 1», чтобы сохранить ее

Комментарии читателей:Править

Обнаружено использование расширения AdBlock.


Викия — это свободный ресурс, который существует и развивается за счёт рекламы. Для блокирующих рекламу пользователей мы предоставляем модифицированную версию сайта.

Викия не будет доступна для последующих модификаций. Если вы желаете продолжать работать со страницей, то, пожалуйста, отключите расширение для блокировки рекламы.

Также на Фэндоме

Случайная вики