Викия

Наука

Правильный тетраэдр

22 032статьи на
этой вики
Добавить новую страницу
Обсуждение0 Поделиться

Обнаружено использование расширения AdBlock.


Викия — это свободный ресурс, который существует и развивается за счёт рекламы. Для блокирующих рекламу пользователей мы предоставляем модифицированную версию сайта.

Викия не будет доступна для последующих модификаций. Если вы желаете продолжать работать со страницей, то, пожалуйста, отключите расширение для блокировки рекламы.

Тетраэдр
Тетраэдр
ТипПравильный многогранник
ГраньПравильный треугольник
Вершин4\,\!
Рёбер6\,\!
Граней4\,\!
Граней при вершине3\,\!
Длина ребраa\,\!
Площадь поверхности\sqrt3a^2\,\!
Объём\frac{\sqrt2}{12}a^3
Высота\sqrt\frac{2}{3}a\,\!
Радиус вписаной сферы\frac{\sqrt6}{12}a
Радиус описанной сферы\frac{\sqrt6}{4}a
Угол наклона ребра\arctan\sqrt2\approx\frac{7}{23}\pi
Угол наклона грани70,53
Группа симметрийТетраэдральная (Th)
Двойственный многогранникТетраэдр

Тетраэдр называется правильным, если все его грани — равносторонние треугольники.

У правильного тетраэдра все двугранные углы при рёбрах и все трёхгранные углы при вершинах равны.

Свойства правильного тетраэдра Править

  • Каждая его вершина является вершиной трех треугольников. А значит, сумма плоских углов при каждой вершине будет равна 180º.
  • В правильный тетраэдр можно вписать октаэдр, притом четыре (из восьми) грани октаэдра будут совмещены с четырьмя гранями тетраэдра, все шесть вершин октаэдра будут совмещены с центрами шести рёбер тетраэдра.
  • Правильный тетраэдр с ребром х состоит из одного вписанного октаэдра (в центре) с ребром х/2 и четырёх тетраэдров (по вершинам) с ребром х/2.
  • Правильный тетраэдр можно вписать в куб двумя способами, притом четыре вершины тетраэдра будут совмещены с четырьмя вершинами куба. Все шесть рёбер тетраэдра будут лежать на всех шести гранях куба и равны диагонали грани квадрата.
  • Правильный тетраэдр можно вписать в икосаэдр, притом, четыре вершины тетраэдра будут совмещены с четырьмя вершинами икосаэдра.

Ссылки Править

Question book-4.svg
В этой статье не хватает ссылок на источники информации.
Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена Шаблон:+года.

[[Категория:Наука:Статьи без ссылок на источники Ошибка: неправильное время]]Шаблон:Сортировка: статьи без источников


  1. Википедия Правильный тетраэдр адрес
  2. Викисловарьадрес
  3. Викицитатникадрес
  4. Викиучебникадрес
  5. Викитекаадрес
  6. Викиновостиадрес
  7. Викиверситетадрес
  8. Викигидадрес

Выделить Правильный тетраэдр и найти в:

  1. Вокруг света тетраэдр адрес
  2. Академик тетраэдр/ru/ru/ адрес
  3. Астронет адрес
  4. Элементы тетраэдр+&search адрес
  5. Научная Россия тетраэдр&mode=2&sort=2 адрес
  6. Кругосвет тетраэдр&results_per_page=10 адрес
  7. Научная Сеть
  8. Традицияадрес
  9. Циклопедияадрес
  10. Викизнаниететраэдр адрес
  1. Google
  2. Bing
  3. Yahoo
  4. Яндекс
  5. Mail.ru
  6. Рамблер
  7. Нигма.РФ
  8. Спутник
  9. Google Scholar
  10. Апорт
  11. Онлайн-переводчик
  12. Архив Интернета
  13. Научно-популярные фильмы на Яндексе
  14. Документальные фильмы
  1. Список ru-вики
  2. Вики-сайты на русском языке
  3. Список крупных русскоязычных википроектов
  4. Каталог wiki-сайтов
  5. Русскоязычные wiki-проекты
  6. Викизнание:Каталог wiki-сайтов
  7. Научно-популярные сайты в Интернете
  8. Лучшие научные сайты на нашем портале
  9. Лучшие научно-популярные сайты
  10. Каталог научно-познавательных сайтов
  11. НАУКА В РУНЕТЕ: каталог научных и научно-популярных сайтов

  • Страница 0 - краткая статья
  • Страница 1 - энциклопедическая статья
  • Разное - на страницах: 2 , 3 , 4 , 5
  • Прошу вносить вашу информацию в «Правильный тетраэдр 1», чтобы сохранить ее

Комментарии читателей:Править

Викия-сеть

Случайная вики