Викия

Наука

Первая космическая скорость

22 032статьи на
этой вики
Добавить новую страницу
Обсуждение0 Поделиться

Обнаружено использование расширения AdBlock.


Викия — это свободный ресурс, который существует и развивается за счёт рекламы. Для блокирующих рекламу пользователей мы предоставляем модифицированную версию сайта.

Викия не будет доступна для последующих модификаций. Если вы желаете продолжать работать со страницей, то, пожалуйста, отключите расширение для блокировки рекламы.

https://ru.wikipedia.org/wiki/%D0%9F%D0%B5%D1%80%D0%B2%D0%B0%D1%8F_%D0%BA%D0%BE%D1%81%D0%BC%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0%D1%8F_%D1%81%D0%BA%D0%BE%D1%80%D0%BE%D1%81%D1%82%D1%8C


Newton Cannon.svg

Анализ первой и второй космической скорости по Исааку Ньютону. Снаряды A и B падают на Землю. Снаряд C выходит на круговую орбиту, D — на эллиптическую. Снаряд E улетает в открытый космос.

Первая космическая скорость (круговая скорость)скорость, которую необходимо придать объекту без двигателя, пренебрегая сопротивлением атмосферы и вращением планеты, чтобы вывести его на круговую орбиту с радиусом, равным радиусу планеты. Иными словами, первая космическая скорость — это минимальная скорость, при которой тело, движущееся горизонтально над поверхностью планеты, не упадёт на неё, а будет двигаться по круговой орбите.

Вычисление Править

В инерциальной системе отсчёта на объект, движущийся по круговой орбите вокруг Земли будет действовать только одна сила - сила тяготения Земли. При этом движение объекта не будет ни равномерным, ни равноускоренным. Происходит это потому, что скорость и ускорение (величины не скалярные, а векторные) в данном случае не удовлетворяют условиям равномерности/равноускоренности движения - т.е. движения с постоянной (по величине и направлению) скоростью/ускорением. Действительно - вектор скорости будет постоянно направлен по касательной к поверхности Земли, а вектор ускорения - перпендикулярно ему к центру Земли, при этом по мере движения по орбите эти вектора постоянно будут менять свое направление. Поэтому в инерциальной системе отчета такое движение часто называют "движение по круговой орбите с постоянной по модулю скоростью"

Часто для удобства вычисления первой космической скорости переходят к рассмотрению этого движения в неинерциальной системе отчета - относительно Земли. В этом случае объект на орбите будет находиться в состоянии покоя, так как на него будут действовать уже две силы: центробежная сила и сила тяготения. Соответственно, для вычисления первой космической скорости необходимо рассмотреть равенство этих сил.

m\frac{v_1^2}{R}=G\frac{Mm}{R^2};
v_1=\sqrt{G\frac{M}{R}};

где m — масса объекта, M — масса планеты, G — гравитационная постоянная (6,67259·10−11 м³·кг−1·с−2), v_1\,\!— первая космическая скорость, R — радиус планеты. Подставляя численные значения (для Земли M = 5,97·1024 кг, R = 6 378 км), найдем

v_1\approx\,\! 7,9 км/с

Первую космическую скорость можно определить через ускорение свободного падения — так как g = GM/R², то

v_1=\sqrt{gR};.


Космические скорости могут быть вычислены и для поверхности других космических тел. Например на Луне v1 = 1,680 км/с, v2 = 2,375 км/с

Примечания Править

См. такжеПравить

Ссылки Править

Литература Править

Wiki letter w.svg
Для улучшения этой статьи желательно?:

Викия-сеть

Случайная вики