Wikia

Наука

Литий

Обсуждение0
14 244статьи на этой вики

Ли́тийхимический элемент с атомным номером 3 в периодической системе, обозначается символом Li (лат. Lithium), мягкий щелочной металл серебристо-белого цвета.

Литий (Li)

Атомный номер

3

Внешний вид

Мягкий серебристо-белый металл

Свойства атома
Атомная масса
(молярная масса)

6,941 а. е. м. (г/моль)

Радиус атома

155 пм

Энергия ионизации
(первый электрон)

519,9(5,39) кДж/моль (эВ)

Электронная конфигурация

[He] 2s1

Химические свойства
Ковалентный радиус

163 пм

Радиус иона

68 (+1e) пм

Электроотрицательность
(по Полингу)

0,98

Электродный потенциал

-3,06В

Степени окисления

1

Термодинамические свойства
Плотность

0,534 г/см³

Удельная теплоёмкость

3,489 Дж/(K·моль)

Теплопроводность

84,8 Вт/(м·K)

Температура плавления

553,69 K

Теплота плавления

2,89 кДж/моль

Температура кипения

1118,15 K

Теплота испарения

148 кДж/моль

Молярный объём

13,1 см³/моль

Кристаллическая решётка
Структура решётки

кубическая объёмноцентрированая

Период решётки

3,490 Å

Отношение c/a

n/a

Температура Дебая

400,00 K

История и происхождение названия Править

Литий был открыт в 1817 году шведским химиком и минералогом А. Арфведсоном сначала в минерале петалите (Li,Na)[Si4AlO10], а затем в сподумене LiAl[Si2O6] и в лепидолите KLi1.5Al1.5[Si3AlO10](F,OH)2. Металлический литий впервые получил Хемфри Дэви в 1825 году.

Свое название литий получил из-за того, что был обнаружен в «камнях» (греч. λίθος — камень). Название было предложено Берцелиусом.

Получение Править

В настоящее время для получения металлического лития его природные минералы или разлагают серной кислотой (кислотный способ), или спекают с CaO или CaCO3 (щелочной способ), или обрабатывают K2SO4 (солевой способ), а затем выщелачивают водой. В любом случае из полученного раствора выделяют плохо растворимый карбонат лития Li2CO3, который затем переводят в хлорид LiCl. Электролиз расплава хлорида лития проводят в смеси с KCl или BaCl2 (эти соли служат для понижения температуры плавления смеси). В дальнейшем полученный литий очищают методом вакуумной дистилляции.

Физические свойства Править

Литий — серебристо-белый металл, мягкий и пластичный, тверже натрия, но мягче свинца. Его можно обрабатывать прессованием и прокаткой. При комнатной температуре металлический литий имеет кубическую объемноцентрированную решетку (координационное число 8), которая при холодной обработке переходит в кубическую плотноупакованную решетку, где каждый атом, имеющий двойную кубооктаэдрическую координацию, окружен 12 другими. Ниже 78 К устойчивой кристаллической формой является гексагональная плотноупакованная структура, в которой каждый атом лития имеет 12 ближайших соседей, расположенных в вершинах кубооктаэдра.

Из всех щелочных металлов литий характеризуется самыми высокими температурами плавления и кипения (180,54 и 1340° С, соответственно), у него самая низкая плотность при комнатной температуре среди всех металлов (0,533 г/см3).

В 1818 немецкий химик Леопольд Гмелин (нем. Gmelin Leopold) (17881853) установил, что соли лития окрашивают бесцветное пламя в карминово-красный цвет.

Маленькие размеры атома лития приводят к появлению особых свойств металла. Например, он смешивается с натрием только ниже 380° С и не смешивается с расплавленными калием, рубидием и цезием, в то время как другие пары щелочных металлов смешиваются друг с другом в любых соотношениях.

Химические свойства Править

Щелочной металл, неустойчив на воздухе. Литий является наименее активным щелочным металлом, с сухим воздухом (и даже с сухим кислородом) при комнатной температуре практически не реагирует.

Во влажном воздухе медленно окисляется, превращаясь в нитрид Li3N, гидроксид LiOH и карбонат Li2CO3. В кислороде при нагревании горит, превращаясь в оксид Li2O.

Литий и его соли окрашивают пламя в карминово-красный цвет, это является качественным признаком для определения лития.

Спокойно, без взрыва и загорания, реагирует с водой, образуя LiOH и H2. Реагирует также с этиловым спиртом, образуя алкоголят, с аммиаком и с галогенамииодом — только при нагревании).

Литий хранят в петролейном эфире, парафине, газолине или минеральном масле в герметически закрытых жестяных коробках. Металлический литий вызывает ожоги при попадании на кожу, слизистые оболочки и в глаза.

Геохимия лития Править

Литий по геохимическим свойствам относится к крупноионным литофильным элементам, в числе которых калий, рубидий и цезий. Содержание лития в верхней континентальной коре составляет 21 г/т.

Основные минералы лития — слюда лепидолит — KLi1,5Al1,5[Si3AlO10] (F, OH)2 и пироксен сподумен — LiAl [Si2O6]. Когда литий не образует самостоятельных минералов, он изоморфно замещает калий в широко распространенных породообразующих минералах.

Месторождения лития приурочены к редкометалльным гранитным интрузиям, в связи с которыми развиваются литиеносные пегматиты или гидротермальные комплексные месторождения, содержащие также олово, вольфрам, висмут и другие металлы. Стоит особо отметить специфические породы онгониты — граниты с магматическим топазом, выскоим содержанием фтора и воды, и исключительно высокими концентрациями различных редких элементов, в том числе и лития.

Другой тип месторождений лития — рассолы некоторых сильносоленых озёр.

ПрименениеПравить

Литий по праву можно назвать важнейшим элементом современной цивилизации и развития технологий. В прошлом и позапрошлом веках критериями развития индустриальной и экономической мощи государств были показатели производства важнейших кислот и металлов, воды и энергоносителей. В 21-м веке Литий прочно и надолго вошел в список таких показателей. Сегодня литий имеет исключительно важное экономическое и стратегическое значение в развитых индустриальных странах, а говоря простым языком: Литий — это дополнительные десятки и сотни миллиардов долларов или рублей в бюджет любой страны, использующей литий.

Термоэлектрические материалы Править

Сплав сульфида лития и сульфида меди — эффективный полупроводник для термоэлектропреобразователей (ЭДС около 530мкВ/градус К).

Химические источники тока Править

Из лития изготовляют аноды химических источников тока (аккумуляторов, например литий-хлорных аккумуляторов), и гальванических элементов с твердым электролитом, резервных, и других (например литий-хромсеребряный элемент, литий-висмутатный элемент,литий-окисномедный элемент, литий-двуокисномарганцевый элемент, литий-йодсвинцовый элемент, литий-йодный элемент, литий-тионилхлоридный элемент, литий-оксидванадиевый элемент, литий-фторомедный элемент, литий-двуокисносерный элемент), работающих на основе неводных жидких и твердых электролитов (тетрагидрофуран, пропиленкарбонат, метилформиат, ацетонитрил).

Кобальтат лития, и молибдат лития показали лучшие эксплуатационные свойства и энергоемкость в качестве положительного электрода литиевых аккумуляторов. Гидроксид лития используется как один из компонентов для приготовления электролита щелочных аккумуляторов.

Кроме того, добавление гидрооксида лития к электролиту тяговых железо-никелевых, никель-кадмиевых, никель-цинковых аккумуляторных батарей повышает их срок службы в 3 раза и емкость на 21 % (за счет образования никелатов лития). Алюминат лития — наиболее эффективный твердый электролит (наряду с цезий-бета-глиноземом).

Металлургия алюминия Править

Карбонат лития является важнейшим вспомогательным веществом (добавляется в электролит) при выплавке алюминия и его потребление растет с каждым годом пропорционально объёму мировой добычи алюминия (расход карбоната лития 2,5-3,5 кг на тонну выплавляемого алюминия).

Легирование алюминия Править

Введение лития в систему легирования позволяет получить новые сплавы с высокой удельной прочностью. Добавка лития снижает плотность сплава и повышает модуль упругости. При содержании лития до 1,8 % сплав имеет низкое сопротивление коррозии под напряжением, а при 1,9 % сплав не склонен к коррозионному растрескиванию. Увеличение содержания лития до 2,3 % способствует возрастанию вероятности образования рыхлот и трещин. Механические свойства при этом изменяются: пределы прочности и текучести возрастают, а пластические свойства снижаются. Наиболее известны системы легирования Al-Mg-Li (пример - сплав 1420, применяемый для изготовления конструкций летательных аппаратов) и Al-Cu-Li (пример - сплав 1460, применяемый для изготовления емкостей для сжиженных газов).

Ракетное топливо Править

Боранат лития — самый емкий источник водорода для его получения в полевых условиях (на 1 кг бораната выделяется 4,1 м³ водорода). Также он применяется в качестве ракетного топлива. Литий и его соединения широко применяются в ракетной технике. Смесь паров лития с молекулярным водородом является эффективным рабочим телом для газофазных ядерных ракетных двигателей. Жидкий литий используется в качестве рабочего тела в электроракетных двигателях, в частности — в сильноточных ЭРД. Литий используется так же в качестве ракетного топлива или добавки к нему. Перхлорат лития применяется как окислитель ракетного топлива. Нитрат лития используется как окислитель ракетного топлива. Сам по себе металлический литий так же используется в качестве мощного ракетного горючего в комбинации с различными окислителями.

</div>

Лазерные материалы Править

Монокристаллы фторида лития используются для изготовления высокоэффективных (КПД 80 %) лазеров на центрах свободной окраски, и для изготовления оптики с широкой спектральной полосой пропускания.

Сплавы Править

Сплавы лития с серебром и золотом, а так же медью являются очень эффективными припоями. Сплавы лития с магнием, скандием, медью, кадмием и алюминием — новые перспективные материалы в авиации и космонавтике. На основе алюмината и силиката лития создана керамика, затвердевающая при комнатной температуре и используемая в военной технике, металлургии, и, в перспективе, в термоядерной энергетике. Огромной прочностью обладает стекло на основе литий-алюминий-силиката, упрочняемого волокнами карбида кремния. Литий очень эффективно упрочняет сплавы свинца и придает им пластичность и стойкость против коррозии.

Электроника Править

Триборат лития-цезия используется как оптический материал в радиоэлектронике. Кристаллические ниобат лития LiNbO3 и танталат лития LiTaO3 являются нелинейными оптическими материалами и широко применяются в нелинейной оптике, акустооптике и оптоэлектронике.

Металлотермия Править

Литий иногда применяется для восстановления методами металлотермии редких металлов.

Ядерная энергетика Править

Изотопы 6Li и 7Li обладают разными ядерными свойствами (сечение поглощения тепловых нейтронов, продукты реакций) и сфера их применения различна. Гафнат лития входит в сосав специальной эмали предназначенной для захоронения высокоактивных ядерных отходов содержащих плутоний.

Литий-6 (термояд) Править

Применяется в термоядерной энергетике.

При облучении нуклида 6Li тепловыми нейтронами получается радиоактивный тритий 31H (Т):

63Li + 10n = 31H + 42He.

Благодаря этому литий-6 может применяться как замена радиоактивного, нестабильного и неудобного в обращении трития как в военных (термоядерное оружие), так и в мирных (управляемый термоядерный синтез) целях. В термоядерном оружии обычно применяется дейтерид лития-6 6LiD.

Литий-7 (теплоноситель) Править

Применяется в ядерных реакторах, использующих реакции с участием тяжёлых элементов, таких, как уран, торий или плутоний.

Благодаря очень высокой удельной теплоёмкости и низкому сечению захвата тепловых нейтронов, жидкий литий-7 (часто в виде сплава с натрием или цезием-133) служит эффективным теплоносителем. Фторид лития-7 в сплаве с фторидом бериллия (66 % LiF + 34 % BeF2 носит название «флайб» (FLiBe)), и применяется как высокоэффективный теплоноситель и растворитель фторидов урана и тория в высокотемпературных жидкосолевых реакторах, и производства трития.

Сушка газов Править

Высокогигроскопичные бромид LiBr и хлорид лития LiCl применяются для осушения воздуха и других газов.

Медицина Править

Соли лития обладают психотропным действием и используются в медицине при профилактике и лечении ряда психических заболеваний. Наиболе распространен в этом качестве карбонат лития.

Смазочные материалы Править

Стеарат литиялитиевое мыло») используется в качестве высокотемпературной смазки.

Регенерация кислорода в автономных аппаратах Править

Гидроксид лития LiOH, пероксид Li2O2 и супероксид LiO2 применяются для очистки воздуха от углекислого газа; при этом последние два соединения реагируют с выделением кислорода (например, 4LiO2 + 2CO2 → 2Li2CO3 + 3O2), благодаря чему они используются в изолирующих противогазах, в патронах для очистки воздуха на подлодках и т. д.

Силикатная промышленность Править

Литий и его соединения широко применяют в силикатной промышленности для изготовления специальных сортов стекла и покрытия фарфоровых изделий, в черной и цветной металлургии (для раскисления, повышения пластичности и прочности сплавов).

Прочие области применения Править

Соединения лития используются в текстильной промышленности (отбеливание тканей), пищевой (консервирование) и фармацевтической (изготовление косметики).

Цены Править

В 2006 году цены на металлический литий 99 % составили в среднем 70 долл за 1 кг.[источник?]

Изотопы лития Править

Природный литий состоит из двух стабильных изотопов: 6Li (7,5 %) и 7Li (92,5 %); в некоторых образцах лития изотопное соотношение может быть сильно нарушено вследствие природного фракционирования изотопов. Известны 7 искусственных радиоактивных изотопов лития (от 4Li до 12Li). Наиболее устойчивый из них, 8Li, имеет период полураспада 0,8403 с. Экзотический изотоп 3Li (трипротон), по-видимому, не существует как связанная система.

7Li является одним из немногих изотопов, возникших при первичном нуклеосинтезе (т. е. вскоре после Большого Взрыва), а не в звёздах.

См. такжеПравить

Категория:Соединения лития

СсылкиПравить

ЛитератураПравить

  • Плющев В.Е., Степин Б.Д. Химия и технология соединений лития, рубидия и цезия.- М.-Л.: Химия, 1970.- 407 с


Периодическая система элементов
H He
Li Be B C N O F Ne
Na Mg Al Si P S Cl Ar
K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
Cs Ba * Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn
Fr Ra ** Rf Db Sg Bh Hs Mt Ds Rg Uub Uut Uuq Uup Uuh Uus Uuo
* La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
** Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr
af:Litium

ar:ليثيوم ast:Litiu be:Ліцій bg:Литий bn:লিথিয়াম bs:Litijum ca:Liti co:Litiu cs:Lithium cy:Lithiwm da:Lithium de:Lithium el:Λίθιο en:Lithium eo:Litio es:Litio et:Liitium eu:Litio fi:Litium fr:Lithium ga:Litiam gl:Litio (elemento) he:ליתיום hr:Litij hu:Lítium hy:Լիթիում id:Litium io:Litio is:Litín it:Litio ja:リチウム jbo:roksodna ka:ლითიუმი ko:리튬 ksh:Lithium ku:Lîtyûm la:Lithium lb:Lithium lt:Litis lv:Litijs mk:Литиум ml:ലിഥിയം nds:Lithium nl:Lithium nn:Litium no:Litium oc:Liti pl:Lit (pierwiastek) pt:Lítio ro:Litiu sh:Litij simple:Lithium sk:Lítium sl:Litij sq:Litiumi sr:Литијум sv:Litium th:ลิเทียม tr:Lityum ug:لىتىي uk:Літій uz:Litiy vi:Liti wa:Litiom zh:锂 zh-min-nan:Li (goân-sò͘) zh-yue:鋰



Эта страница использует содержимое раздела Википедии на русском языке. Оригинальная статья находится по адресу: Литий. Список первоначальных авторов статьи можно посмотреть в истории правок. Так же, как и в этом проекте, тексты, размещённые в Википедии, доступны на условиях Creative Commons BY-SA 3.0.


Викия-сеть

Случайная вики