ФЭНДОМ


https://ru.wikipedia.org/wiki/%D0%98%D0%B7%D0%BB%D1%83%D1%87%D0%B5%D0%BD%D0%B8%D0%B5_%D0%A5%D0%BE%D0%BA%D0%B8%D0%BD%D0%B3%D0%B0


Излуче́ние Хо́кингагипотетический процесс излучения разнообразных элементарных частиц, преимущественно фотонов, чёрной дырой. Получил название в честь Стивена Хокинга.

История Править

В. Грибов в дискуссии с Я. Зельдовичем настаивал на том, что благодаря квантовому туннелированию чёрные дыры должны излучать частицы[1][2]. Еще до публикации своей работы Хокинг посетил Москву в 1973 году, где он встречался с советскими учёными Яковом Зельдовичем и Алексеем Старобинским. Они продемонстрировали Хокингу, что в соответствии с принципом неопределённости квантовой механики вращающиеся чёрные дыры должны порождать и излучать частицы.[3]

Испарение чёрных дыр Править

Emblem-important
Возможно, этот раздел содержит оригинальное исследование.
Добавьте ссылки на источники, в противном случае он может быть удалён.
Дополнительные сведения могут быть на странице обсуждения. (31 октября 2014)



Broom icon
Стиль этого раздела неэнциклопедичен или нарушает нормы русского языка.
Следует исправить раздел согласно стилистическим правилам Науки.
Подробное рассмотрение темы: Hawking radiation

Испарение чёрной дырыквантовый процесс. Дело в том, что понятие о чёрной дыре как объекте, который ничего не излучает, а может лишь поглощать материю, справедливо до тех пор, пока не учитываются квантовые эффекты. В квантовой же механике благодаря туннелированию появляется возможность преодолевать потенциальные барьеры, непреодолимые для неквантовой системы. Утверждение, что конечное состояние чёрной дыры стационарно, верно лишь в рамках обычной, не квантовой теории тяготения. Квантовые эффекты ведут к тому, что на самом деле чёрная дыра должна непрерывно излучать, теряя при этом свою энергию.

В случае чёрной дыры ситуация выглядит следующим образом. В квантовой теории поля физический вакуум наполнен постоянно рождающимися и исчезающими флуктуациями различных полей (можно сказать и «виртуальными частицами»). В поле внешних сил динамика этих флуктуаций меняется, и если силы достаточно велики, прямо из вакуума могут рождаться пары частица-античастица. Такие процессы происходят и вблизи (но всё же снаружи) горизонта событий чёрной дыры. При этом возможно, что одна из частиц (не важно какая) падает внутрь чёрной дыры, а другая улетает и доступна для наблюдения. Из закона сохранения энергии следует, что такая «упавшая» за горизонт событий частица из рождённой виртуальной пары должна обладать отрицательной энергией, так как «улетевшая» частица, доступная для удалённого наблюдателя, обладает положительной энергией.

Также этот процесс очень грубо можно представить как «заём» энергии вакуумом у внешнего поля для рождения пары частица+античастица. В отсутствие чёрной дыры аннигиляция «возвращает» энергию полю. В описываемом случае при наличии чёрной дыры аннигиляции не происходит, одна из частиц улетает к наблюдателю, унося часть «занятой» энергии, тем самым уменьшая энергию, и следовательно массу чёрной дыры.

Важным является не только предсказываемый факт излучения, но и то, что это излучение имеет тепловой спектр (для безмассовых частиц). Это значит, что излучению вблизи горизонта событий чёрной дыры можно сопоставить определённую температуру

T_{BH}={\hbar\,c^3\over8\pi k\,G M} \approx 1{,}227\cdot 10^{23}\; \mathrm{K}\cdot\left(\frac{M}{1\;\mathrm{kg}}\right)^{-1} \approx 6{,}169\cdot 10^{-8}\; \mathrm{K}\cdot\frac{M_\odot}{M},

где Шаблон:Hbar — приведённая постоянная Планка, cскорость света в вакууме, kпостоянная Больцмана, Gгравитационная постоянная, Шаблон:Moмасса Солнца и, наконец, M — масса чёрной дыры. При этом не только спектр излучения (распределение его по частотам), но и более тонкие его характеристики (например, все корреляционные функции) точно такие же, как у излучения чёрного тела. Развивая теорию, можно построить и полную термодинамику чёрных дыр.

Однако такой подход к чёрной дыре оказывается внутренне противоречивым и приводит к проблеме исчезновения информации в чёрной дыре. Причиной этого является отсутствие успешной теории квантовой гравитации. Существование излучения Хокинга предсказывается не всеми квантовыми теориями гравитации[4] и оспаривается рядом исследователей.[5]

Исследование Править

Точку в споре о существовании эффекта должны были бы поставить наблюдения, однако температуры известных астрономам чёрных дыр слишком малы, чтобы излучение от них можно было бы зафиксировать — массы дыр слишком велики. Поэтому до сих пор гипотеза не подтверждена наблюдениями.

Согласно общей теории относительности, при образовании Вселенной могли бы рождаться первичные чёрные дыры, некоторые из которых (с начальной массой 1012 кг) должны были бы заканчивать испаряться в наше время[6]. Так как интенсивность испарения растёт с уменьшением размера чёрной дыры, то последние стадии должны быть по сути взрывом чёрной дыры. Пока таких взрывов зарегистрировано не было.

Известно о попытке исследования «излучения Хокинга» на основе модели — аналога горизонта событий для белой дыры, в ходе физического эксперимента, проведённого исследователями из Миланского университета (англ.)[7][8].

В 2014 году Джефф Штейнхауэр из Израильского технологического института провёл эксперимент по моделированию излучения Хокинга в лаборатории с помощью звуковых волн.[9][10][11]

Интересные факты Править

  • Излучение Хокинга — главный аргумент учёных относительно распада (испарения) небольших чёрных дыр, которые теоретически могут возникнуть в ходе экспериментов на БАК.[12]
  • На этом эффекте основана идея сингулярного реактора — устройства для получения энергии из чёрной дыры за счёт излучения Хокинга.[13]

См. также Править

Ссылки Править

Примечания Править

  1. Ансельм А. А., Гинзбург В. Л., Докшицер Ю. Л., Дятлов И. Т., Захаров В. Е., Иоффе Б. Л., Липатов Л. Н., Николаев Н. Н., Окунь Л. Б., Петров Ю. В., Тер-Мартиросян К. А., Халатников И. М. Памяти Владимира Наумовича Грибова // Успехи физических наук. — 1998. — Т. 168. — С. 471-472.
  2. Дьяконов Дмитрий Игоревич. Грибов, Зельдович, Хокинг (рус.). scientific.ru (8 октября 2011). — Воспоминания свидетеля событий, физика-теоретика. — «Речь зашла об излучении вращающейся чёрной дыры. Все понимали, что вращающееся тело излучает, и вслух прикидывали — дипольное? квадрупольное? но Яков Борисович говорил что-то третье, что понять было трудно. Опять поднялся невообразимый гвалт. В какой-то момент Грибов сказал: не понимаю, зачем дыре вращаться, она и в покое должна излучать — фотон с длиной волны больше шварцшильдовского радиуса невозможно запереть! Аудитория это мгновенно осознала и стала прикидывать, какую длину волны излучает чёрная дыра с массой Солнца, и так далее.»
  3. Stephen Hawking. A Brief History of Time. — Bantam Books, 1988.
  4. Adam D. Helfer. Do black holes radiate? Rept. Prog. Phys. 66 (2003) 943—1008; arXiv: gr-qc/0304042v1.
  5. V. A. Belinski. On the existence of black hole evaporation yet again Phys. Lett. A 354 (2006) 249—257; arXiv:gr-qc/0607137.
  6. Бернард Карр, Стивен Гиддингс Квантовые черные дыры // В мире науки. — 2005.
  7. Hawking radiation from ultrashort laser pulse filaments
  8. Александр Будик. Впервые получено излучение Хоукинга. 3DNews (28 сентября 2010 года). Проверено 9 октября 2010.
  9. Ахмедов Эмиль. Моделирование излучения Хокинга. postnauka.ru (21.10.2014).
  10. Ученым впервые удалось воспроизвести излучение Хокинга. Phys.org (15.10.2014).
  11. http://www.nature.com/nphys/journal/v10/n11/full/nphys3104.html
  12. Ответы профессора Университетского колледжа Лондона Джонатан Батерворс на вопросы читателей bbcrussian.com о Большом адронном коллайдере. Архивировано из первоисточника 22 августа 2011.
  13. L. Crane Possible Implications of the Quantum Theory of Gravity. — 1994.

Литература Править


Шаблон:Чёрные дыры


  1. Википедия Излучение Хокинга адрес
  2. Викисловарьадрес
  3. Викицитатникадрес
  4. Викиучебникадрес
  5. Викитекаадрес
  6. Викиновостиадрес
  7. Викиверситетадрес
  8. Викигидадрес

Выделить Излучение Хокинга и найти в:

  1. Вокруг света Хокинга адрес
  2. Академик Хокинга/ru/ru/ адрес
  3. Астронет адрес
  4. Элементы Хокинга+&search адрес
  5. Научная Россия Хокинга&mode=2&sort=2 адрес
  6. Кругосвет Хокинга&results_per_page=10 адрес
  7. Научная Сеть
  8. Традицияадрес
  9. Циклопедияадрес
  10. ВикизнаниеХокинга адрес
  1. Google
  2. Bing
  3. Yahoo
  4. Яндекс
  5. Mail.ru
  6. Рамблер
  7. Нигма.РФ
  8. Спутник
  9. Google Scholar
  10. Апорт
  11. Онлайн-переводчик
  12. Архив Интернета
  13. Научно-популярные фильмы на Яндексе
  14. Документальные фильмы
  1. Список ru-вики
  2. Вики-сайты на русском языке
  3. Список крупных русскоязычных википроектов
  4. Каталог wiki-сайтов
  5. Русскоязычные wiki-проекты
  6. Викизнание:Каталог wiki-сайтов
  7. Научно-популярные сайты в Интернете
  8. Лучшие научные сайты на нашем портале
  9. Лучшие научно-популярные сайты
  10. Каталог научно-познавательных сайтов
  11. НАУКА В РУНЕТЕ: каталог научных и научно-популярных сайтов

  • Страница 0 - краткая статья
  • Страница 1 - энциклопедическая статья
  • Разное - на страницах: 2 , 3 , 4 , 5
  • Прошу вносить вашу информацию в «Излучение Хокинга 1», чтобы сохранить ее

Комментарии читателей:Править

Обнаружено использование расширения AdBlock.


Викия — это свободный ресурс, который существует и развивается за счёт рекламы. Для блокирующих рекламу пользователей мы предоставляем модифицированную версию сайта.

Викия не будет доступна для последующих модификаций. Если вы желаете продолжать работать со страницей, то, пожалуйста, отключите расширение для блокировки рекламы.

Также на ФЭНДОМЕ

Случайная вики