ФЭНДОМ


Геометрия Римана (Эллиптическая геометрия) — одна из трёх «великих геометрий» (Евклида, Лобачевского и Римана). Если геометрия Евклида реализуется на поверхностях с постоянной нулевой гауссовой кривизной, Лобачевского — с постоянной отрицательной, то геометрия Римана реализуется на поверхностях с постоянной положительной гауссовой кривизной, т.е. на сферах. Исторически геометрия Римана появилась позже двух других геометрий (в 1854 г.).

В геометрии Римана прямая определяется двумя точками, плоскость — тремя, две плоскости пересекаются по прямой и т.д., но через данную точку нельзя провести к прямой ни одной параллельной. В геометрии Римана, как и в сферической геометрии, справедливо утверждение: сумма углов треугольника больше двух прямых, имеет место формула \,\Sigma = \pi + {S}/{R^2}, где \,\Sigma — сумма углов треугольника, \,R — радиус сферы, на которой реализована геометрия.

Геометрия Римана

Отождествление противоположных точек сферы в геометрии Римана

Геометрия Римана похожа на сферическую геометрию, но отличается тем, что любые две «прямые» имеют не две, как в сферической, а только одну точку пересечения. Поэтому иногда геометрией Римана называют геометрию на сфере, в которой противоположные точки отождествлены; таким образом из сферы получается проективная плоскость. Именно, рассмотрим сферу \,S с центром в точке \,O в трехмерном пространстве \,E. Каждая точка A \in S вместе с центром сферы \,O определяет некоторую прямую l \subset E, т.е. некоторую точку \,A_* проективной плоскости \,\Pi. Сопоставление A \to A_* определяет отображение S \to \Pi, большие круги на \,S (прямые в сферической геометрии) переходят в прямые на проективной плоскости \,\Pi, при этом в одну точку A_*\in \Pi переходят ровно две точки сферы: вместе с точкой A \in S и диаметрально противоположная ей точка A' \in S (см. рисунок). Евклидовы движения пространства \,E, переводящие сферу \,S в себя, задают некоторые определенные преобразования проективной плоскости \,\Pi, которые являются движениями геометрии Римана. В геометрии Римана любые прямые пересекаются, поскольку это верно для проективной плоскости, и таким образом, в ней нет параллельных прямых.

Геометрия Римана не является абсолютной геометрией. В частности, в ней нет естественного понятия «точка C лежит между точками A и B», которое используется в аксиоматике абсолютной геометрии. Действительно, на прямую проективной плоскости \,\Pi отображается большой круг на сфере \,S, причем две диаметрально противоположные точки сферы \,A и \,A' переходят в одну точку A_* \in \Pi. Аналогично, точки \,B, B' переходят в одну точку B_* \in \Pi и точки \,C, C' переходят в одну точку C_* \in \Pi. Таким образом, с равным основанием можно считать, что точка \,C_* лежит между \,A_* и \,B_* и что она не лежит между ними (см. рисунок).

Литература Править

  • Ефимов Н. В. Высшая геометрия. — 7-е изд. — М.: ФИЗМАТЛИТ, 2003. — 584 с. — ISBN 5-9221-0267-2.
  • Алексеевский Д. В., Винберг Э. Б., Солодовников А. С. Геометрия пространств постоянной кривизны. В кн.: Итоги науки и техники. Современные проблемы математики. Фундаментальные направления. — М.: ВИНИТИ, 1988. — Т. 29. — С. 1—146.
  • Берже М. Геометрия. — Пер. с франц. — в 2 т. — М.: Мир, 1984. — Том II, часть V: Внутренняя геометрия сферы, гиперболическая геометрия, пространство сфер.
  • Степанов Н. Н. Сферическая тригонометрия. — Л.—М., 1948.
  • Шафаревич И. Р., Ремизов А. О. Линейная алгебра и геометрия, — М.: Физматлит, 2009.
  • Александров А. Д., Нецветаев Н. Ю. Геометрия. — М.: Наука, 1990.
  • Александров П. С. Что такое неэвклидова геометрия. — М.: УРСС, 2007.
  • Клейн Ф. Неевклидова геометрия. — Любое издание.

  1. Википедия Геометрия Римана адрес
  2. Викисловарьадрес
  3. Викицитатникадрес
  4. Викиучебникадрес
  5. Викитекаадрес
  6. Викиновостиадрес
  7. Викиверситетадрес
  8. Викигидадрес

Выделить Геометрия Римана и найти в:

  1. Вокруг света Римана адрес
  2. Академик Римана/ru/ru/ адрес
  3. Астронет адрес
  4. Элементы Римана+&search адрес
  5. Научная Россия Римана&mode=2&sort=2 адрес
  6. Кругосвет Римана&results_per_page=10 адрес
  7. Научная Сеть
  8. Традицияадрес
  9. Циклопедияадрес
  10. ВикизнаниеРимана адрес
  1. Google
  2. Bing
  3. Yahoo
  4. Яндекс
  5. Mail.ru
  6. Рамблер
  7. Нигма.РФ
  8. Спутник
  9. Google Scholar
  10. Апорт
  11. Онлайн-переводчик
  12. Архив Интернета
  13. Научно-популярные фильмы на Яндексе
  14. Документальные фильмы
  1. Список ru-вики
  2. Вики-сайты на русском языке
  3. Список крупных русскоязычных википроектов
  4. Каталог wiki-сайтов
  5. Русскоязычные wiki-проекты
  6. Викизнание:Каталог wiki-сайтов
  7. Научно-популярные сайты в Интернете
  8. Лучшие научные сайты на нашем портале
  9. Лучшие научно-популярные сайты
  10. Каталог научно-познавательных сайтов
  11. НАУКА В РУНЕТЕ: каталог научных и научно-популярных сайтов

  • Страница 0 - краткая статья
  • Страница 1 - энциклопедическая статья
  • Разное - на страницах: 2 , 3 , 4 , 5
  • Прошу вносить вашу информацию в «Геометрия Римана 1», чтобы сохранить ее

Комментарии читателей:Править

Обнаружено использование расширения AdBlock.


Викия — это свободный ресурс, который существует и развивается за счёт рекламы. Для блокирующих рекламу пользователей мы предоставляем модифицированную версию сайта.

Викия не будет доступна для последующих модификаций. Если вы желаете продолжать работать со страницей, то, пожалуйста, отключите расширение для блокировки рекламы.

Также на ФЭНДОМЕ

Случайная вики