ФЭНДОМ


АТОМНАЯ ФИЗИКА - раздел физики, посвящённый изучению строения и свойств атомов и элементарным процессам, в к-рых участвуют атомы. Наиболее характерные для А. ф. длины (линейные размеры атомов) ~10-8 см, а энергии (энергии связи внешних электронов в атоме, элементарных химических процессов с участием атомов) порядка эВ (тогда как для ядерной физики наиболее характерны длины ~10-13 см и энергии порядка МэВ).

Теоретическая основа А. ф.- квантовая механика, позволяющая объяснить огромную совокупность микроскопических явлений на атомно-молекулярном уровне. Существенно, что строение и свойства атома как системы, состоящей из ядра и электронов, и характеристики излучательных и безызлучательных элементарных процессов, протекающих на этом уровне, определяются электро-магнитным взаимодействием (в отличие от ядерной физики и физики элементарных частиц, в к-рых фундаментальную роль играют сильное взаимодействие и слабое взаимодействием; причём сильное взаимодействие не проявляется на характерных для А. ф. расстояниях, превышающих 10-12 см, а слабое взаимодействие должно приводить в А. ф. к весьма интересным, но очень малым по величине эффектам).


Предыстория и основные этапы развития атомной физики Править

Возникновению А. ф. предшествовало развитие атомистических представлений о строении материи. Первоначальные идеи о существовании атомов как мельчайших неделимых и неизменных частиц материи были высказаны в Древней Греции в 5-3 вв. до н. э. (Демокрит, Эпикур). В период становления точного естествознания в 17-18 вв. атомистические представления в различных формах развивали И. Кеплер (J. Kepler), П. Гассенди (P. Gassendi), P. Декарт (R. Descartes), P. Бойль (R. Boyle), И. Ньютон (I. Newton), M. В. Ломоносов, P. Бошкович (R. Boskovic) и др. Однако эти представления носили гипотетический характер и лишь с конца 18 - начала 19 вв. экспериментальные исследования свойств вещества привели к созданию атомистических теорий.

На основе установленных количественных химических законов и законов идеальных газов с начала 19 в. стала развиваться химическая атомистика [[[Дж. Дальтон]] (J. Dalton), А. Авогадро (A. Avogadro di Quaregna), Я. Берцелиус (J. Berzelius)], в сер. 19 в. чётко разграничены и определены понятия атома и молекулы [[[С. Канниццаро]] (S. Cannizzaro)], в 1869 Д. И. Менделеев открыл периодический закон химических элементов. Представления физической атомистики легли в основу развития молекулярной физики, в т. ч. кинетической теории газов (сер. 19 в.), и классической статистической физики [2-я пол. 19 в., P. Клаузиус (R. Clausius), Дж. Максвелл (J. С. Maxwell), Л. Больцман (L. Boltzmann), Дж. У. Гиббс (J. W. Gibbs)]. B конце 18-19 вв. начало развиваться учение о внутренем строении кристаллов и их симметрии [P. Гаюи (R. J. Hauy), O. Браве (A. Bravais), E. С. Фёдоров, А. Шёнфлис (A. M. Schoenflies)] на основе атомистических представлений. Однако в 19 в. хим и физическая атомистика и атомистика в кристаллографии не имели общей теоретической основы, ею стала в 20 в. квантовая теория строения атомов, молекул и кристаллов, созданная в результате развития А. ф.

Возникновение современной А. ф. связано с открытиями электрона (1897) и радиоактивности (1896). Они создали основу для построения моделей атома как системы взаимодействующих электрически заряженных частиц. Важнейшим этапом развития А. ф. стало открытие Э. Резерфордом (E. Rutherford) в 1911 атомного ядра и рассмотрение атома на основе квантовых представлений H. Бором (N.H.D. Bohr) в 1913.


Теоретические и экспериментальные основы атомной физики Править

Резерфорд предложил модель атома, состоящего из центрального положительно заряженого ядра большой массы и размеров, малых по сравнению с размерами атома в целом, и из отрицательно заряженных электронов, имеющих по сравнению с ядром малую массу. Он экспериментально обосновал эту модель опытами по рассеянию a-частиц атомами. Все свойства атома оказались связанными либо со свойствами ядра (их изучает ядерная физика), либо со свойствами электронных оболочек атома.

Строение последних определяет химические и большинство физических свойств атома и периодичность этих свойств в зависимости от основных характеристики атома в целом - величины положительного заряда его ядра. Однако на основе законов классической физики не могли быть объяснены устойчивость атома (ускоренно движущиеся вокруг ядра электроны должны непрерывно излучать и очень быстро упасть на ядро) и линейчатые атомные спектры, закономерности в к-рых подчиняются комбинационному принципу Ритца. Выход из этих трудностей нашёл Бор, применив к атому квантовые представления, впервые введённые M. Планком в 1900 и развивавшиеся с 1905 А. Эйнштейном и др. учёными. Основу квантовой теории атома Бора составляют два постулата:

  • 1-й постулат Бора о существовании стационарных состояний атома, находясь в к-рых он не излучает (стационарные состояния обладают опре-дел. значениями энергии, в общем случае дискретными, из одного состояния в другое атом может переходить путём квантового, скачкообразного, перехода);
  • 2-й постулат Бора о квантовых переходах с излучением, определяемых условием частот: ~E_i - E_k = h\nu, где ~\nu- частота поглощаемого или испускаемого монохроматического электро-магннитного излучения, ~E_i , E_k - энергии стационарных состояний, между к-рыми происходит переход.

Постулаты Бора были всесторонне подтверждены экспериментально, оказались применимыми для других микросистем (молекул, атомных ядер) и получили теоретические обоснование в квантовой механике и квантовой электродинамике. Для определения возможных дискретных значений энергии простейшего атома - атома водорода - в стационарных состояниях Бор применил классическую механику и предположение о совпадении результатов квантовой и классической теорий при малых частотах излучения, что представляло первоначальную форму соответствия принципа, который Бор развивал в дальнейшем, придавая ему большое значение; принцип соответствия сыграл большую роль в становлении квантовой механики.

Рассмотрение, согласно модельной теории атома Бора, движения электронов в стационарных состояниях по законам классической механики при дополнительных условиях квантования (в частности, при условии равенства момента импульса электрона на круговой орбите целому кратному постоянной h/2\pi; это условие часто неправильно включают в число постулатов Бора) позволило самому Бору, А. Зоммерфельду (A. Sommerfeld) и другим учёным объяснить закономерности в оптических и рентгеновских спектрах и дать физическое истолкование периодического закона элементов. Однако модельная теория Бора встретилась с рядом трудностей при объяснении свойств сложных атомов и простейших молекул (уже для атома гелия и молекулы водорода), что было связано с использованием классической механики и имело принципиальный характер. Эти трудности были разрешены на следующем этапе развития А. ф. созданием начиная с 1925 последовательной квантовой теории.

См. также Править

Ссылки Править

Обнаружено использование расширения AdBlock.


Викия — это свободный ресурс, который существует и развивается за счёт рекламы. Для блокирующих рекламу пользователей мы предоставляем модифицированную версию сайта.

Викия не будет доступна для последующих модификаций. Если вы желаете продолжать работать со страницей, то, пожалуйста, отключите расширение для блокировки рекламы.